图片新闻
  • 国家天文台举办2022年毕业典礼暨学位授予仪式
    6月23日,中国科学院国家天文台在B座广场举行2022年毕业典礼暨学位授予仪式,共同见证75位毕业生的高光时刻。10点整,在庄严的国歌声中典礼正式开始,欧阳自远院士、陈建生院士、汪景琇院士、武向平院士,以及国家天文台台长常进院士、党委书记汪洪岩与49名毕业生代表, 25位导师代表。?国家天文台党委书记汪洪岩为优秀毕业生代表牛泽茜、赵雪杉、曹烨颁奖,国家天文台学位评定委员会主席武向平院士宣读了中国科学院大学学位授予决定。
      6月23日,中国科学院国家天文台在B座广场举行2022年毕业典礼暨学位授予仪式,共同见证75位毕业生的高光时刻。疫情防控之下,口罩遮挡不住大家的欢心笑容,炎炎烈日正如导师们对学生的炽热期盼。10点整,在庄严的国歌声中典礼正式开始,欧阳自远院士、陈建生院士、汪景琇院士、武向平院士,以及国家天文台台长常进院士、党委书记汪洪岩与49名毕业生代表,25位导师代表,及来自北京大学、清华大学、北京师范大学、中科院高能物理研究所等兄弟单位的特邀嘉宾、毕业生家属们共同见证这一庄严时刻。 
       
       
      刘继峰副台长主持毕业典礼 
       
      常进台长毕业生寄语 
      国家天文台副台长、学位评定委员会副主席刘继峰研究员主持典礼,奏唱国歌后,常进台长向顺利完成学业的同学们表示热烈祝贺,向培养和陪伴成长的老师们、亲友们表示诚挚敬意!常进台长对毕业生提出三点期望:希望同学们在未来成为一名身心健康、心地善良、事业有成的人。这是一份希望也是一份祝愿。“险夷不变应尝胆,道义争担敢息肩。”希望同学们纵横四海,以丰硕的成果回馈社会。 
       
      博士毕业生代表赵雪杉发言 
      硕士生代表金高翔发言
      随后赵雪杉、金高翔分别作为博士毕业生和硕士毕业生代表发言。他们讲述了在国台数载的成长与收获,表达了对国台与导师诚挚的感谢,表示:“我们是追星星的人,头顶的这片美丽星空蕴含着无数奥秘。从改进望远镜到数据处理,从氢原子到黑洞,从太阳系内到银河系外,我们可以自豪地说,自己为揭开宇宙的神秘面纱而努力过。” 
        
      优秀校友代表仲佳勇老师发言 
      导师代表罗阿理老师发言 
      北京师范大学仲佳勇老师作为优秀校友代表也给师弟师妹们分享了自己的体会。他建议大家一要抓住机遇,勇于创新;二要树立理想目标,坚守自我;三要学会感恩。LAMOST运行和发展中心罗阿理研究员作为导师代表致辞,也给同学们提了三点建议:人生目标要远大、眼界要宽广;要立足当下,精益求精地完成每项工作;学会换位思考、勇于担责。并代表国台欢迎毕业生们常回家看看。 
      国家天文台党委书记汪洪岩为优秀毕业生代表牛泽茜、赵雪杉、曹烨颁奖,国家天文台学位评定委员会主席武向平院士宣读了中国科学院大学学位授予决定。 
      汪洪岩书记为优秀毕业生代表颁发证书
       
      武向平院士宣读中国科学院大学学位授予决定 
      接下来典礼进入学位授予仪式阶段,导师们在主席台上依次为49位本硕博毕业生代表颁发学位证书、扶正流苏。同学们在台上与导师合影的那一刻,家长眼中闪着莹莹泪光、台下导师心中也充满了感慨与不舍。 
        
      最后由在学研究生们带来的一首“一起向未来”将会场气氛点燃,冲淡了离情别绪,燃起了满怀斗志!大咖云集的嘉宾席、细节满满的照片纪念墙、随处布置的拍照打卡牌、精心组织的典礼日程,为毕业生们留下了深刻而难忘的记忆,正如刘继峰副台长所希望的那样:愿毕业生们能够脚踏实地、圆梦青春,继续站在时代的前端,放眼世界与未来,肩负起振兴国家的使命;潜心治研、厚积薄发、至诚报国,若干年后回首,能有更加精彩万分的人生故事! 
       
      
    2022-06-27
  • 嫦娥五号新成果揭示着陆区月表水的分布特征
    北京时间2022年6月15日,国际科学期刊《自然?通讯》( Nature Communications )在线发布我国嫦娥五号的一项重要研究成果。在国际上首次联合月球样品的实验室分析结果和月表就位探测的光谱数据,检验了月球样品中水的有无、形式和多少,回答了嫦娥五号着陆区水的分布特征和来源问题,为遥感探测数据中水的信号解译和估算提供了地面真值。研究受国家科技重大专项探月工程三期和中国科学院重点部署项目“嫦娥五号月球样品的综合性研究”等项目资助。
      北京时间2022年6月15日,国际科学期刊《自然 通讯》 (Nature Communications) 在线发布我国嫦娥五号的一项重要研究成果。中国科学院国家天文台李春来、刘建军研究员和上海技术物理研究所舒嵘研究员领导的团队,与地质与地球物理研究所、物理研究所、西安光学精密机械研究所、地球化学研究所,北京空间飞行器总体设计部、北京航天飞行控制中心、北京空间机电研究所等单位合作,在国际上首次联合月球样品的实验室分析结果和月表就位探测的光谱数据,检验了月球样品中水的有无、形式和多少,回答了嫦娥五号着陆区水的分布特征和来源问题,为遥感探测数据中水的信号解译和估算提供了地面真值。 
      月球有没有水,有多少水,是什么形式的水,水来自于哪里存在着很大的争议,一直是月球科学的研究热点。在嫦娥五号任务立项论证之初,研究团队提出将着陆器上的月球矿物光谱分析仪光谱范围拓展到了3.2μm,并实现了国际上首次月表水光谱吸收特征的就位探测。为了避免发动机羽流和太阳风轰击月表时的动态“水”(羟基OH)给就位光谱分析带来的影响,研究团队对获取就位探测光谱数据的时机进行了精心设计。探测时机选择在着陆6小时后以避免CE-5探测器着陆时发动机羽流成分的影响;探测时间选择在月面温度最高(约62-87摄氏度)的(接近)正午,最大限度地挥发了月表的动态“水”;光谱测量时月球(着陆区)正处于地球磁场的保护中,屏蔽了太阳风,避免了太阳风轰击产生的动态“水”(羟基OH)的因素。在这种环境下嫦娥五号光谱仪能够获得“干净”的“水”吸收光谱,经严格的校正处理和分析,研究团队发现嫦娥五号着陆区月壤中明显地含有羟基形式的“水”,但平均含量较低,仅约30ppm。 
      目前认为月球“水”的来源主要有三种可能:一是太阳风粒子与月表物质相互作用产生的(动态)羟基物质;二是撞击月球的彗星或陨石带来的水和含羟基物质;三是月球原生(内部)水。月球样品返回地球后,研究团队在实验室对返回月球样品进行了系统分析,实验室光谱分析再次验证了羟基水的明确存在,但“水”的存在形式、含量和来源的研究,需要详细的矿物岩石学分析。阿波罗月球样品研究认为,月壤中(撞击)胶结玻璃包含了太阳风长期注入形成的羟基物质,胶结玻璃的含量是影响月球样品中“水”含量的重要因素。我国返回样品的实验室分析表明,嫦娥五号月球样品是一类年轻玄武岩,胶结玻璃含量很少(不足16%),仅为Apollo 11月球样品的1/3,由此估算嫦娥五号月壤样品中来自太阳风注入胶结玻璃形成的“水”不多于18 ppm。同时,嫦娥五号着陆区月壤样品中外来撞击溅射物非常低,对“水”的贡献可以忽略。因此嫦娥五号月壤样品中肯定存在来源于月球内部的原生水。对嫦娥五号月球样品的实验室分析,发现了至少一种含水矿物——羟基磷灰石,其含量不均匀,折合样品羟基水的含量从0ppm到179 ppm不等(平均约17 ppm),证明了嫦娥五号月壤样品中存在来自岩浆结晶过程的“水”,说明“水”在月球晚期岩浆活动过程中不仅存在,而且可能起到了非常重要的作用。 
      本研究成果的月面就位探测光谱数据由中国科学院上海技术物理所研制的月球矿物光谱分析仪获取,科学探测载荷运行管理、数据接收和处理由中国科学院国家天文台(探月工程地面应用系统)完成。研究受国家科技重大专项探月工程三期和中国科学院重点部署项目“嫦娥五号月球样品的综合性研究”等项目资助。 
      
    2022-06-15
  • 中国天眼FAST发现首例持续活跃快速射电暴
    快速射电暴( FRB )是宇宙中最明亮的射电爆发现象,在1毫秒的时间内释放出太阳大约一整年才能辐射出的能量。此前并未发现存在持续活跃的重复快速射电暴。?近日,中国科学院国家天文台李菂研究员领导的国际团队,通过中国天眼FAST的“多科学目标同时巡天( CRAFTS ) ”优先重大项目,发现了迄今为止唯一一例持续活跃的重复快速射电暴FRB 20190520B 。之后该团队通过组织多台国际设备天地协同观测,综合射电干涉阵列、光学、红外望远镜以及空间高能天文台的数据,将FRB20190520B定位于一个距离我们30亿光年的贫金属的矮星系,确认近源区域拥有目前已知的最大电子密度。2 .夜空下的中国天眼FAST和美国甚大天文阵列望远镜(非实景图) 。
      快速射电暴(FRB)是宇宙中最明亮的射电爆发现象,在1毫秒的时间内释放出太阳大约一整年才能辐射出的能量。FRB的研究历程并不长,2007年首次确定了它的存在,2016年探测到第一例重复爆发的FRB,打破了人们对FRB的传统认知,目前该领域已成为天文学最新研究热点之一。全球已公布了近五百例FRB,仅不到10例有活跃爆发(即在其窗口期内频繁爆发)。此前并未发现存在持续活跃的重复快速射电暴。 
      近日,中国科学院国家天文台李菂研究员领导的国际团队,通过中国天眼FAST的“多科学目标同时巡天(CRAFTS)”优先重大项目,发现了迄今为止唯一一例持续活跃的重复快速射电暴 FRB 20190520B。之后该团队通过组织多台国际设备天地协同观测,综合射电干涉阵列、光学、红外望远镜以及空间高能天文台的数据,将FRB20190520B定位于一个距离我们30亿光年的贫金属的矮星系,确认近源区域拥有目前已知的最大电子密度,并发现了迄今第二个FRB持续射电源对应体(Persistent Radio Source , PRS)。上述发现揭示了活跃重复暴周边的复杂环境有类似超亮超新星爆炸的特征,挑战了对 FRB 色散分析的传统观点,为构建快速射电暴的演化模型、理解这一剧烈的宇宙神秘现象打下了基础。该成果于北京时间2022年6月9日在国际学术期刊《自然》杂志发表。 
      论文第一作者、国家天文台青年学者牛晨辉在系统处理FAST数据的过程中,发现2019年5月20日的数据存在重复的高色散脉冲。基于这一发现,团队通过与美国甚大阵列望远镜合作,在2020年7月完成亚角秒量级的精确定位,并探测到了一颗与之对应的致密的持续射电源(PRS)。随后通过美国帕洛玛 200 英寸望远镜和凯克望远镜,加拿大-法国-夏威夷望远镜和日本斯巴鲁近红外光学望远镜确定了FRB20190520B的宿主星系和红移,推导出其宿主星系贡献了总色散值的80%,为目前已知所有快速射电暴源中最高。进一步结合散射特征,团队提出宿主星系的色散主要来自邻近FRB爆发源的区域,该区域高电子密度导致的高色散值也使得FRB 20190520B远远偏离经典的色散与红移关系,如图1所示。 
      此次FAST发现的FRB 20190520B与美国阿雷西博望远镜2016年发现的FRB 20121102A非常相似。FRB 20121102A是人类发现的第一个快速射电暴重复暴和第一个被定位的FRB,也是此前唯一被确认有致密射电源对应体的FRB。二者都极为活跃,都拥有复杂的电磁环境,而FRB 20190520B各方面的特征都更为极端:例如FRB 20121102A存在爆发活跃期,但是FRB 20190520B从未停止爆发,目前FAST已经探测到了后者几百次爆发。本研究发现的初步结果公布后,引起了国际天文界的广泛关注,这一重要发现已经催生数篇创新模型文章,例如散射时标模型、超新星爆炸解释等。 
      综合FAST的近期观测数据,FRB20121102A和FRB 20190520B很可能处在快速射电暴初生阶段。FAST的持续观测,特别是执行“快速射电暴巡天”优先重大项目,有望建立全新的FRB演化图景。 
      FRB领域创始人邓肯·洛里默对此评价说:“基于FRB 20190520B这些特征及其持续射电源的存在,我认为快速射电暴可能有不同的分类。随着快速射电暴样本的持续增长,预计未来几年内,我们能够拨开快速射电暴神秘的面纱。” 
      FAST“多科学目标同时巡天(CRAFTS)”优先重大项目迄今已经发现至少6例新FRB,正在为揭示宇宙中这一神秘现象的机制、推进天文学这一全新领域的研究做出独特的贡献。 
       
      图1.从色散-红移关系上清晰可见FRB 20190520B拥有最大的宿主星系电子密度。图中斜线为包含了宇宙主要重子物质成分的“Macquart Relation[5]”。 
       
      图2.夜空下的中国天眼FAST和美国甚大天文阵列望远镜(非实景图)。 
      
    2022-06-09
  • 国家天文台召开第四届职工代表大会第一次会议
    4月26日,国家天文台第四届职工代表大会第一次会议在多功能厅召开,台领导班子成员、职代会代表、分工会主席等参加了会议。会议由副台长、工会主席赵公博主持。受台长常进院士委托,党委书记、副台长汪洪岩同志以《凝心聚力。守正创新踔厉奋发笃行不怠履行好国家战略科技力量主力军的使命》 ”为题,向大会作了国家天文台2021年度工作报告(含财务工作报告) 。他希望各位代表继续强化对提案工作的认识,围绕全台改革发展、科技创新、职工权益、增强活力等方面,认真开展调查研究,听取职工群众呼声意见,做到敢提案、会提案、提好案,积极建言献策,为国家天文台发展做出新的更大贡献。? ?会议现场.
      4月26日,国家天文台第四届职工代表大会第一次会议在多功能厅召开,台领导班子成员、职代会代表、分工会主席等参加了会议。会议由副台长、工会主席赵公博主持。
      工会主席赵公博主持大会
       庄严的国歌后,大会正式开始。受台长常进院士委托,党委书记、副台长汪洪岩同志以《凝心聚力 守正创新 踔厉奋发 笃行不怠 履行好国家战略科技力量主力军的使命》”为题,向大会作了国家天文台2021年度工作报告(含财务工作报告)。人事处处长吕品对《国家天文台人员聘用制度实施细则》议案进行了说明。提案工作委员会主任王菲鹿介绍了本次大会提案的征集情况和上次大会提案的落实情况。
      党委书记、副台长汪洪岩做年度工作汇报
      与会代表分成四个小组,结合年度工作报告、本次会议议案和职工代表提案,围绕全台改革发展、科技创新、职工权益、增强活力等方面开展了热烈的讨论,并在大会上分别进行了汇报交流。 
      根据职代会程序,大会审议并原则通过了《国家天文台2021年度工作报告》、《国家天文台人员聘用制度实施细则》。   
       
      分组讨论
      最后,汪洪岩代表台领导班子讲话。他对本次大会的圆满召开表示祝贺,充分肯定了全台职工的主人翁精神和职工代表履职尽责的责任和意识,并对分组讨论形成的建设性意见和建议进行了回应。他希望各位代表继续强化对提案工作的认识,围绕全台改革发展、科技创新、职工权益、增强活力等方面,认真开展调查研究,听取职工群众呼声意见,做到敢提案、会提案、提好案,积极建言献策,为国家天文台发展做出新的更大贡献。 
       
      会议现场
      
    2022-04-27
  • 天文学家基于LAMOST数据揭示银河系早期形成和演化历史
    北京时间3月24日,国际科学期刊《自然》以封面文章形式发布了德国马普天文研究所的研究人员向茂盛博士和Hans-Walter Rix教授合作的一项重大成果。基于中国科学院国家天文台运行的国家重大科技基础设施郭守敬望远镜( LAMOST )和欧空局天体测量卫星盖亚望远镜( Gaia )的巡天观测数据,研究人员获取了迄今最为精确的大样本恒星年龄信息,按照时间序列清晰还原了银河系幼年和青少年时期的形成与演化图像。改写了人们对银河系早期形成历史的认知。至此,一个时间轴上被精确刻画的早期银河系形成和演化图像得以呈现, 《自然》期刊审稿人评价该成果是第一次能够对银河系的形成历史提供如此清晰地描绘。
      北京时间3月24日,国际科学期刊《自然》以封面文章形式发布了德国马普天文研究所的研究人员向茂盛博士和Hans-Walter Rix教授合作的一项重大成果。基于中国科学院国家天文台运行的国家重大科技基础设施郭守敬望远镜(LAMOST)和欧空局天体测量卫星盖亚望远镜(Gaia)的巡天观测数据,研究人员获取了迄今最为精确的大样本恒星年龄信息,按照时间序列清晰还原了银河系幼年和青少年时期的形成与演化图像,改写了人们对银河系早期形成历史的认知。 
       
      3月24日刊《自然》杂志封面 - 追星人的银河指南  
      夜空中美丽浩瀚的银河,自古以来就引发了人们无数的想象和无尽的探索。我们所在的银河系是无数宇宙岛中一个普通盘星系,和其它类似星系一样,它在过去的一百多亿年间集成了上千亿颗恒星。这些恒星根据位置的不同,主要分布在银河系的银晕和银盘上,其中银盘又包括一个几何上相对较厚的厚盘和一个相对较薄且更延展的薄盘。然而,银河系的银晕和银盘是在什么时间,如何形成,又是如何组装起来并演化成今天绚丽多姿的银河等系列起源问题一直是天文家亟待解决的科学谜团,同时也是世界范围内多个地面和空间望远镜大规模天文巡天观测计划的主要科学目标。 
      过去的研究通常认为,我们的银河系在婴儿时期(极早期)经历了剧烈的形成过程,大量的贫金属气体塌缩(天文上把除氢和氦以外的元素都叫做金属)或者是富含气体的星系间相互碰撞和并合形成了银河系的恒星晕。然后气体逐渐冷却形成了早期银盘即银河系厚盘。最后,随着时间推移气体进一步冷却,开始形成银河系薄盘。薄盘的形成是一个持久而有序的过程,从大约80-100亿年前一直持续至今。然而,这些图像主要来自数值模拟以及人们对碎片化观测证据的推测。所幸天文观测大数据的涌现使得银河系演化图像正在被改写,开启银河尘封历史的时代已经到来。 
      LAMOST发布千万量级的恒星光谱数据,成为数字化银河的基石。欧空局发射的Gaia卫星则提供了14亿颗恒星的位置和移动地图。这样的珠联璧合为天文学家追溯银河系的集成和演化历史提供了得天独厚的优势。 
      向茂盛博士和Rix教授基于LAMOST和Gaia数据,构建了包含25万颗亚巨星的高质量数据样本,并获取了它们的精确年龄。恒星年龄是最难以精确测定的恒星物理量,也可以说是天文领域最难精确测量的物理量之一。得益于LAMOST银河系巡天及国际上其它巡天项目的开展,获取大样本恒星的年龄已在过去几年内逐渐成为现实。但是,之前的研究所获取的大样本恒星典型年龄误差为20%或更大,而实现10%年龄测定精度的恒星样本很小,样本的空间和参数范围也十分受限。 
      亚巨星是处于恒星主序演化阶段向红巨星演化阶段过渡阶段的恒星。其可观测参数尤其是光度对于其初始质量和年龄极为敏感,因此它们的年龄相对容易被精确测定。但是恒星在亚巨星阶段的演化十分迅速,导致亚巨星比较稀少。利用LAMOST光谱大数据,向茂盛精确测定了700万颗恒星的大气参数,并结合Gaia数据得到了高精度的恒星光度和轨道运动学参数。从这700万恒星中筛选出25万颗亚巨星,测定出它们的精确年龄,样本平均年龄精度为7%,金属元素丰度覆盖范围从-2.5(从太阳金属含量的300分之一)到0.5(太阳金属含量的3倍),空间覆盖范围达3万光年。这是首次在银河系如此广阔的空间范围和恒星金属丰度范围内获取如此大样本恒星的高精度年龄,成功突破了数据的局限性,为开展银河系的形成与演化历史研究跨出了标志性的一步。 
      按照运动特征和化学DNA(元素丰度)鉴定,他们把这25万恒星划分成两组:一组表征为形成于动力学相对宁静过程的银河系延展薄盘的恒星;另一组形成于动力学剧烈湍动过程的银晕和厚盘恒星。 
      研究团队发现,这两组恒星的年龄以大约80亿年为界同样清晰地被分成截然不同的两组。也就是说,从时间上看,银河系的集成和演化历史分成两个明确的阶段,从130亿年前到80亿年前的早期阶段和80亿年前至今的晚期阶段。早期阶段形成了银河系的厚盘和银晕,晚期阶段形成了银河系薄盘。
      超高的时间分辨率使得研究团队得到了清晰的银河系早期集成和增丰图像:银河系厚盘恒星从130亿年以前就已经开始形成,这距离宇宙大爆炸仅仅过去8亿年时间(对应宇宙学红移为7)。最古老的厚盘星甚至要比银河系内晕恒星年老约10-20亿年。银河系内晕结构被认为主要是百手巨人恩塞拉都斯矮星系(Gaia-Sausage-Enceladus,GSE)碰撞银河系并被吸积并合时形成。也就是说,早期厚盘要比今天我们看到的主要恒星银晕结构领先10-20亿年形成,这刷新了对银河系早期形成历史的传统认知。 
       
      银河早期集成和演化图像示意图:138亿年前宇宙大爆炸,130亿年前厚盘开始形成,110亿年前银晕形成,80亿前至今银河薄盘形成。(图源:喻京川)
      经进一步研究,向茂盛等人还发现虽然厚盘的形成一直持续了从130亿年前到80亿年前的大约50亿年时间,期间金属元素含量增加了30倍。然而,虽然这个周期持续了50亿年,但是作者发现大多数厚盘恒星却形成于约110亿年前的一次集中爆发。与此同时,他们通过年龄数据研究发现矮星系GSE与早期银河系并合发生的时间大约也是在110亿年前,这比前人认为的早了10亿年。这两个年龄高度吻合,研究团队认为这绝非偶然,而是强烈暗示了厚盘的恒星形成活动受到了GSE撞击事件的显著激发。 
      形成厚盘恒星的气体大约在80亿年前耗尽,厚盘形成停止。差不多与此同时,新的气体开始从银河系周围聚集到一个更薄的盘上形成银河系薄盘恒星。薄盘形成过程一直持续至今。 
      至此,一个时间轴上被精确刻画的早期银河系形成和演化图像得以呈现,《自然》期刊审稿人评价该成果是第一次能够对银河系的形成历史提供如此清晰地描绘。 
      银河系作为普通星系的代表,是我们研究宇宙中一般星系形成与演化问题的重点实验室,它可以帮助天文学家追溯从极早期宇宙一直到今天所发生的一个个精彩故事。 
      论文链接:www.nature.com/articles/s41586-022-04496-5。 
       
      
    2022-03-24
  • 国家天文台研究团队找到快速射电重复暴的“身份证”
    快速射电暴( FRB )是在无线电波段最为剧烈的爆发现象,其起源未知,是当今天文学领域最大的热点前沿之一。中国科学院国家天文台李菂团队系统分析了来自包括“中国天眼” FAST 、美国绿岸望远镜GBT在内的多项数据,首次提出了能够统一解释重复快速射电暴偏振频率演化的机制,并基于此导出了能够描述快速射电暴周边环境单一参数即“ RM弥散” 。?快速射电暴的偏振性质包含了快速射电暴本征特性与形成环境的丰富信息,对快速射电暴偏振性质的精确测量将继续推进对快速射电暴环境及其起源的理解进程。
      快速射电暴(FRB)是在无线电波段最为剧烈的爆发现象,其起源未知,是当今天文学领域最大的热点前沿之一。中国科学院国家天文台李菂团队系统分析了来自包括“中国天眼”FAST、美国绿岸望远镜GBT在内的多项数据,首次提出了能够统一解释重复快速射电暴偏振频率演化的机制,并基于此导出了能够描述快速射电暴周边环境单一参数即“RM弥散”。这一机制支持重复快速射电暴处在类似超新星遗迹的复杂电离环境中,并且可以通过偏振观测确定其可能的演化阶段,为最终确定FRB起源提供了关键观测证据。快速射电暴的“RM弥散”越大对应其周边环境变化越剧烈,因此也很可能越年轻,这有潜力成为辨识重复暴的“身份证”。这一工作于北京时间2022年3月18号发表在国际科学期刊《科学》杂志。 
      快速射电暴的偏振性质包含了快速射电暴本征特性与形成环境的丰富信息,对快速射电暴偏振性质的精确测量将继续推进对快速射电暴环境及其起源的理解进程。此项工作充分结合了FAST的灵敏度高优势和这一国际热点前沿的丰富观测资源,包括美国的Greenbank望远镜,加拿大CHIME望远镜,澳大利亚平方公里阵列先导阵(ASKAP)等,为构建完整的FRB起源模型提供了重要的观测基础。本文第一作者冯毅博士(现为之江国家实验室研究员)发现了重复暴的线偏振度存在随频率降低而降低的统一趋势(图一),并可以通过单一参数“RM弥散(σRM)”量化描述,这排除了基于辐射区磁层高度变化的脉冲星偏振内禀频率演化(intrinsic frequency evolution)等其他模型。研究团队中的理论专家包括云南大学杨元培副教授、普林斯顿鲁文宾博士、内华达大学张冰教授等人已经构建了基于多路径传播的磁化散射屏模型(Yang et al.2022已接受发表),可以进一步限制FRB源周围的复杂环境,包括湍流尺度、密度涨落、磁场构型等重要物理性质。FAST的持续深度监测结合其他先进设备,有望在未来2-3年回答关于FRB起源的一系列关键问题,例如重复暴与非重复暴是否有统一起源等问题。 
      文章链接: www.science.org/doi/10.1126/science.abl7759。 
       
       重复快速射电暴偏振频率演化关系。不同颜色的线代表不同的快速射电暴的偏振随频率演化关系曲线,每条线仅用一个参数“RM弥散(σRM)”拟合。σRM越大代表快速射电暴所处的环境越复杂,其所处的演化阶段极为可能越早,和超新星遗迹等爆发类现象的特征更为吻合。
       
      快速射电暴偏振统一特性示意图。对于极端活跃的重复暴,GBT看到的高频信号(蓝色)一般具有100%线偏振。FAST看到的相对低频信号(红色)一般没有偏振,反映了爆发源的复杂电离环境。 
       
      
    2022-03-18
  • 2021年度“中国科学十大进展”发布,国家天文台取得优异成绩
    2月28日,科学技术部高技术研究发展中心(基础研究管理中心)发布“ 2021年度中国科学十大进展” ,中国科学院国家天文台主持或参与取得的3项重要成果入选。国家天文台入选的3项成果为: FAST捕获世界最大快速射电暴样本(国家天文台主持完成) ,嫦娥五号月球样品揭示月球演化奥秘(国家天文台共同主持完成) ,火星探测任务天问一号探测器成功着陆火星(国家天文台参与并作出重要贡献) 。“中国科学十大进展”遴选活动由科学技术部高技术研究发展中心(基础研究管理中心)牵头举办,旨在宣传我国重大基础研究科学进展。3 .火星探测任务天问一号探测器成功着陆火星(国家天文台参与并作出重要贡献) ?.
      2月28日,科学技术部高技术研究发展中心(基础研究管理中心)发布“2021年度中国科学十大进展”,中国科学院国家天文台主持或参与取得的3项重要成果入选。 
      国家天文台入选的3项成果为:FAST捕获世界最大快速射电暴样本(国家天文台主持完成),嫦娥五号月球样品揭示月球演化奥秘(国家天文台共同主持完成),火星探测任务天问一号探测器成功着陆火星(国家天文台参与并作出重要贡献)。 
      “中国科学十大进展”遴选活动由科学技术部高技术研究发展中心(基础研究管理中心)牵头举办,旨在宣传我国重大基础研究科学进展。中国科学十大进展遴选程序分为推荐、初选和终选3个环节。2021年度,共推荐310项科学研究进展;科学技术部高技术研究发展中心组织专家初选会议,从310项中遴选出30项进展进入终选;终选邀请中国科学院院士、中国工程院院士、国家重点实验室主任、国家重点研发计划有关重点专项总体专家组成员和项目负责人、原973计划顾问组和咨询组专家及项目首席科学家等3500余位知名专家学者对30项候选科学进展进行网上投票,得票数排名前10位的最终当选。 
       
      图1. FAST捕获世界最大快速射电暴样本(国家天文台主持完成) 
       
      图2. 嫦娥五号月球样品揭示月球演化奥秘(国家天文台共同主持完成) 
       
      图3.火星探测任务天问一号探测器成功着陆火星(国家天文台参与并作出重要贡献) 
      
    2022-02-28
  • 【新闻联播】新思想引领新征程 踔厉奋发 建设世界科技强国
    习近平总书记指出,我国已经开启全面建设社会主义现代化国家新征程,科技创新在党和国家发展全局中具有十分重要的地位和作用。奋进新征程、建功新时代。新的一年,广大科技工作者肩负时代使命,力争勇攀科技高峰、跑出创新加速度,为建设世界科技强国提供强大动能。 新年伊始,位于贵州平塘大山深处的中国天眼FAST就传来好消息,取得了一批重大成果。截至目前,FAST新发现脉冲星约500颗,并在中性氢谱线测量星际磁场等领域取得重大进展。
    2022-01-19
  • 中国天眼高质量开放运行 取得系列重要科学成果
    中国天眼( FAST )自2020年1月11日通过国家验收至今已近两周年。两年来,中国科学院国家天文台按照“高水平管理和运行好这一重大科学基础设施,早出成果、多出成果,出好成果、出大成果”的要求,在全力组织做好FAST高质量开放运行的同时,第一时间成立了FAST科学委员会、时间分配委员会和用户委员会。为充分发挥FAST科学效能,促进重大科学成果产出,科学委员会围绕FAST优势科学目标,征集遴选了五个优先重大项目,组织全国优秀科研团队,开展大团队集中攻关,取得了一系列重要成果。右图FAST-FermiLAT合作开展脉冲星观测艺术想象图, 《中国科学》 2021年第12期封面。
      中国天眼(FAST)自2020年1月11日通过国家验收至今已近两周年。两年来,中国科学院国家天文台按照“高水平管理和运行好这一重大科学基础设施,早出成果、多出成果,出好成果、出大成果”的要求,在全力组织做好FAST高质量开放运行的同时,第一时间成立了FAST科学委员会、时间分配委员会和用户委员会,统筹规划科学方向、遴选重大项目、制定数据开放政策、分配观测时间等。为充分发挥FAST科学效能,促进重大科学成果产出,科学委员会围绕FAST优势科学目标,征集遴选了五个优先重大项目,组织全国优秀科研团队,开展大团队集中攻关,取得了一系列重要成果。 
      2021年3月31日,FAST正式向全球开放共享,向全球天文学家征集观测申请,彰显了中国科学家与国际科学界携手合作的理念。此次征集收到来自不同国家共7216小时的观测申请,最终14个国家(不含中国)的27份国际项目获得批准,并于2021年8月启动科学观测。 
      FAST运行效率和质量不断提高,年观测时长超过5300小时,已远超国际同行预期的工作效率,为FAST科学产出起到重要支撑作用。截至目前,FAST共发现约500颗脉冲星,成为自其运行以来世界上发现脉冲星效率最高的设备。 
      2021年,依托FAST又取得了一批重要科研成果。 
      FAST中性氢谱线测量星际磁场取得重大进展。中性氢是宇宙中丰度最高的元素,广泛存在于宇宙的不同时期,是不同尺度物质分布的最佳示踪物之一。国家天文台庆道冲、李菂领导的国际合作团队采用原创的中性氢窄线自吸收方法,利用FAST首次获得原恒星核包层中的高置信度的塞曼效应测量结果。发现星际介质从冷中性气体到原恒星核具有连贯性的磁场结构,异于标准模型预测,为解决恒星形成三大经典问题之一的“磁通量问题”提供了重要的观测证据。-该成果论文于北京时间2022年1月6日在国际学术期刊《自然》杂志以封面文章形式正式发表。 
      获得迄今最大快速射电暴爆发事件样本,首次揭示快速射电暴的完整能谱及其双峰结构。快速射电暴(FRB)是宇宙中最明亮射电爆发现象,起源未知,是天文学最新热点。国家天文台李菂、王培、朱炜玮领导的国际合作团队利用FAST对快速射电暴FRB121102进行观测,在约50天内探测到1652次爆发事件,获得迄今最大的快速射电暴爆发事件样本,超过此前本领域所有文章发表的爆发事件总量,首次揭示了快速射电暴的完整能谱及其双峰结构,成果论文于2021年10月14日在国际学术期刊《自然》杂志发表。FAST多科学目标巡天已经发现至少6例新FRB,正在为揭示这一宇宙中神秘现象的机制、推进这一天文学全新的领域做出独特的贡献。 
      “银道面脉冲星快照巡天”项目持续发现毫秒脉冲星。发现脉冲星是国际大型射电望远镜观测的主要科学目标之一。国家天文台韩金林领导的FAST重大优先项目“银道面脉冲星快照巡天”在不到两年时间,累计观测了约620个机时,完成了计划搜寻天区的8%,截至目前该项目新发现279颗脉冲星,其中65个为毫秒脉冲星,在双星系统中的有22颗。相关论文于2021年5月在国内学术期刊《天文和天体物理学研究》发表。国际著名学者澳大利亚科学院院士Manchester教授评价“发现这么多脉冲星令人印象深刻”,“发现如此众多毫秒脉冲星,是一个显著的成就”。该工作执行1年半所发现的脉冲星数已经超越美国阿雷西博望远镜15年的搜寻结果。 
      开展多波段合作观测,开启脉冲星搜索新方向,并打开研究脉冲星电磁辐射机制的新途径。基于FAST灵敏度国际领先的优势,将FAST与高能波段的重要空间天文设施费米伽马射线天文台大视场望远镜(Fermi-LAT)相结合进行天地一体化协同和后随观测,具有产生重大科学突破的潜力。国家天文台李菂、王培领导的国际合作团队发现了多颗脉冲星,并开展了多波段观测分析。相关成果于2021年12月在国内学术期刊《中国科学》上以封面及编辑点评文章形式发表。多波段合作观测不仅开启了FAST脉冲星搜索新方向,而且打开了研究脉冲星电磁辐射机制的新途径,为研究中子星星族演化和探测引力波提供更多样本。 
      基于超高灵敏度的明显优势,FAST已成为中低频射电天文领域的观天利器,未来将在快速射电暴起源与物理机制、中性氢宇宙研究、脉冲星搜寻与物理研究、脉冲星测时与低频引力波探测等方向产出深化人类对宇宙认知的科学成果。 
      2021年2月5日,习近平总书记在考察贵州时,专门听取了FAST工作汇报,并视频连线慰问现场工作人员。习总书记指出,中国天眼是观天巨目、国之重器,实现了我国在前沿科学领域的一项重大原创突破。总书记对中国科学院和广大科技工作者的亲切关怀,体现了对科技自立自强和强化国家战略科技力量的殷切期望。中国科学院将以更为开放的姿态向全球共享科学研究设施,为国际天文学界提供高水平的观测平台,促进天文研究国际合作,提升我国天文研究的国际地位和影响力,用“中国智造”为构建人类命运共同体贡献“中国智慧”,推动世界科技发展和人类文明进步。 
        
      《自然》杂志封面设计稿,呈现金牛座分子云天区的星际介质和磁场。曲线为普朗克卫星测量的磁场方向图,本底星云来自赫歇尔空间望远镜拍摄的尘埃图像。 
       
       
      左图快速射电暴FRB 121102平均每小时爆发率的能量分布。在低能端90%探测完备性下测量到低于特征能量E0=4.8x1037erg开始出现爆发率下降,展现了复杂能量分布。右图FAST观测快速射电暴艺术想象图,图中脉冲来自FAST观测FRB121102真实数据。图片版权:国家天文台
       
      左图PSR J0318+0253位置和积分脉冲轮廓。a)FAST一小时跟踪观测的射电波段积分轮廓;b)折叠Fermi-LAT累积9年数据所获得的伽马光子积分脉冲轮廓。右图FAST-FermiLAT合作开展脉冲星观测艺术想象图,《中国科学》2021年第12期封面。 
       
      
    2022-01-06
  • 国家天文台二〇二二年新年贺词
    值此辞旧迎新之际,国家天文台党政领导班子向全台广大科技工作者、干部职工、离退休老同志、青年学生、来访学者,向关心、支持国家天文台改革创新发展的各界人士致以最诚挚的问候和最美好的祝愿!
    2021-12-31
查看更多