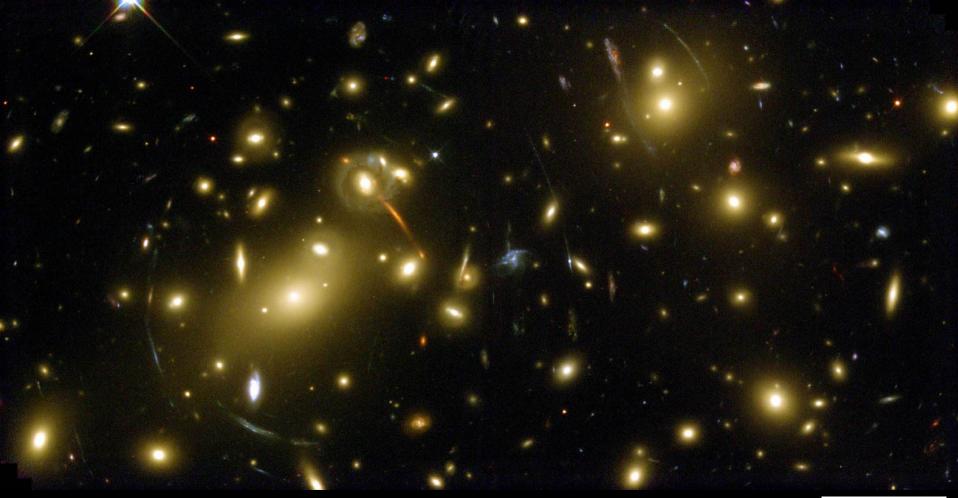
Automated Analysis Of Strong Lenses in the Era of Big Data

Nan Li (NAOC) on Behave of the CSST-SLWG

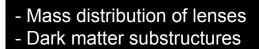




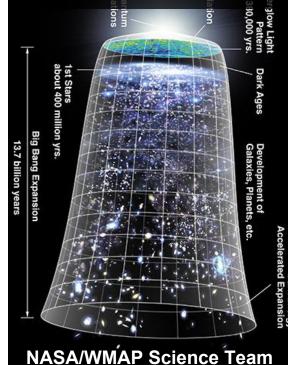
http://www.roe.ac.uk/~heymans/website_images/abell2218.jpg

Why Gravitational Lensing Matters?



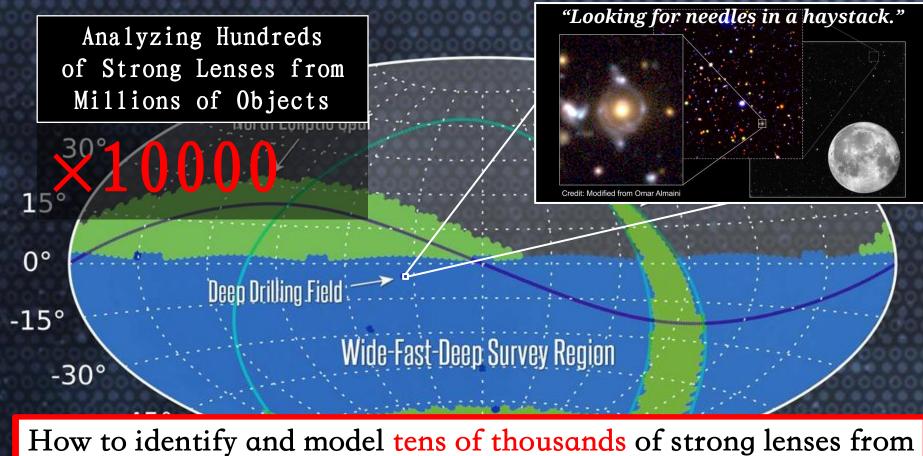


Structure Formation History
Cosmological Parameters





Dark Ages



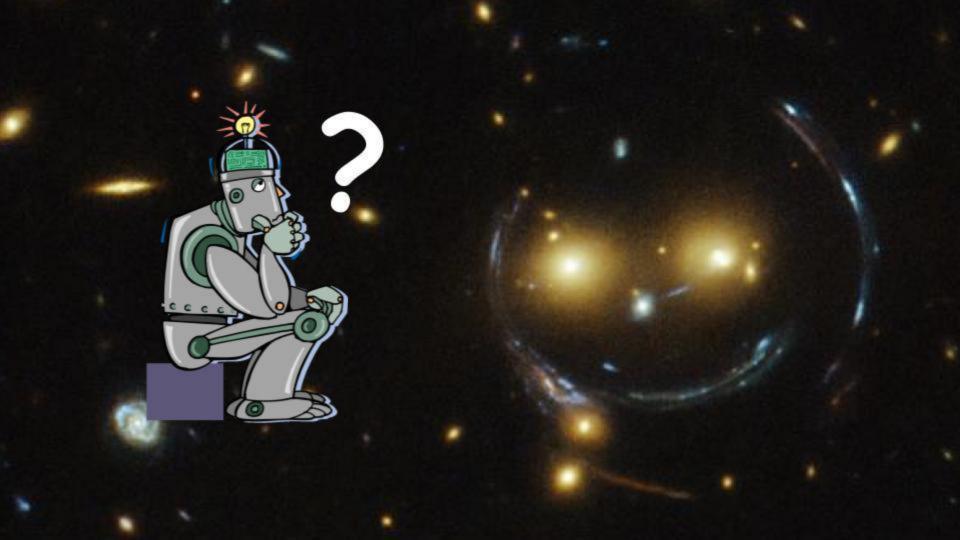
tens of billions of astronomical objects in the big data era???

http://www.mobactu.fr/wp-content/uploads/Face-detection.png

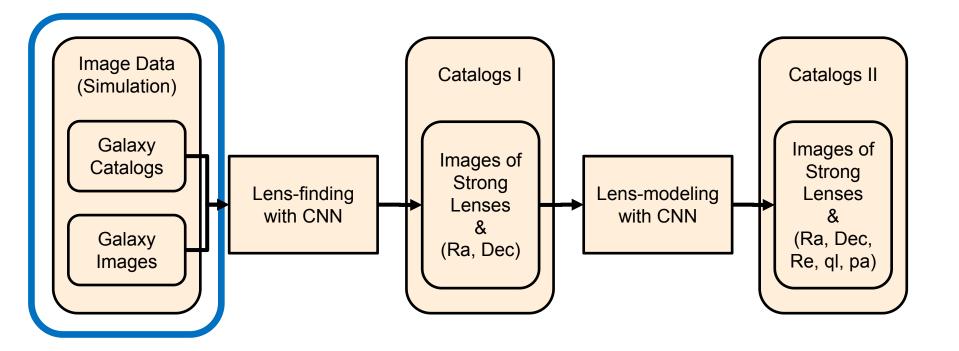
0.9

1.5

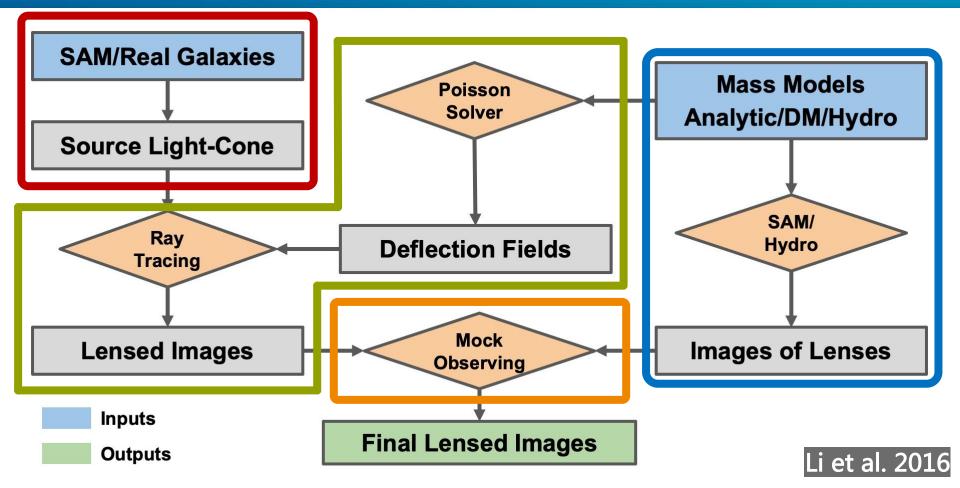
0.99



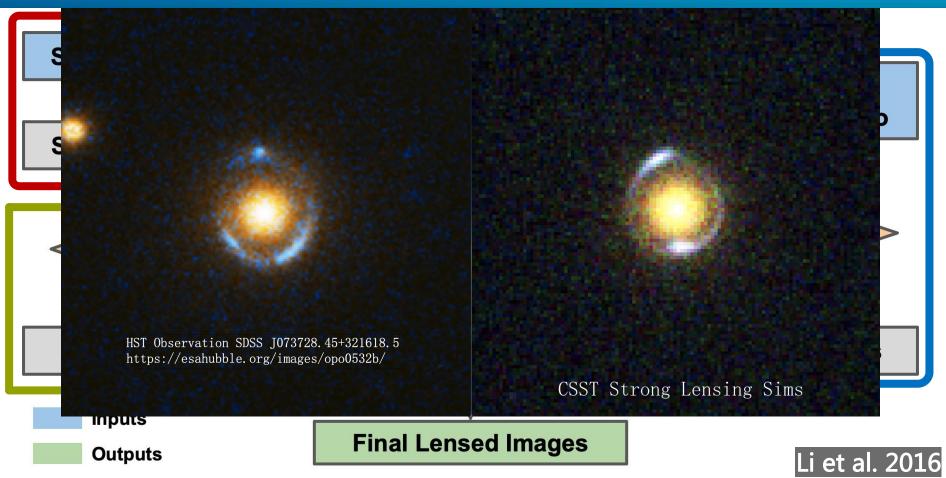
How to identify and model tens of thousands of strong lenses from tens of billions of astronomical objects in the big data era ???

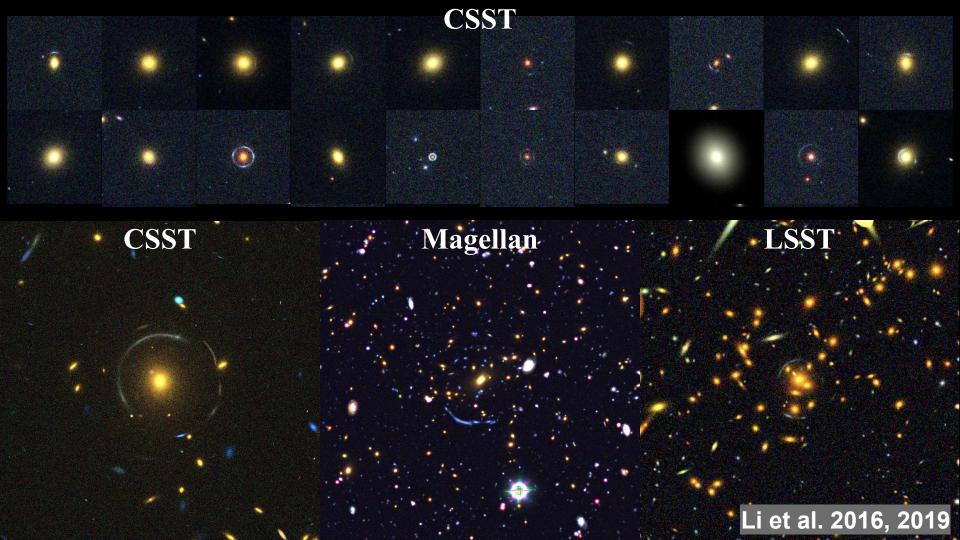


Simulations of Gravitational Lenses (PICS)

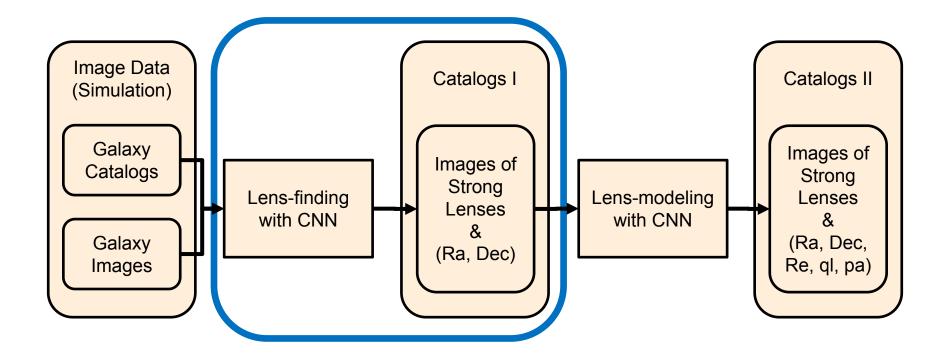


Simulations of Gravitational Lenses (PICS)

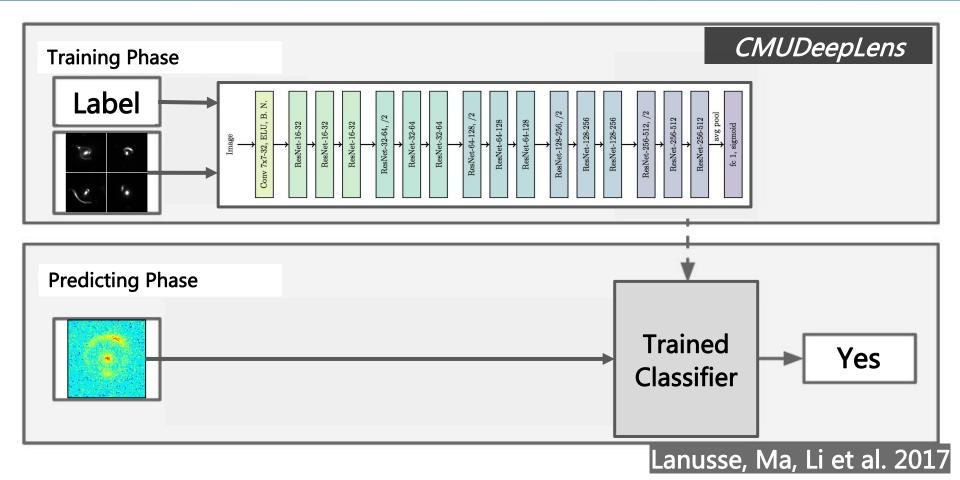




How to identify and model tens of thousands of strong lenses from tens of billions of astronomical objects in the big data era ???



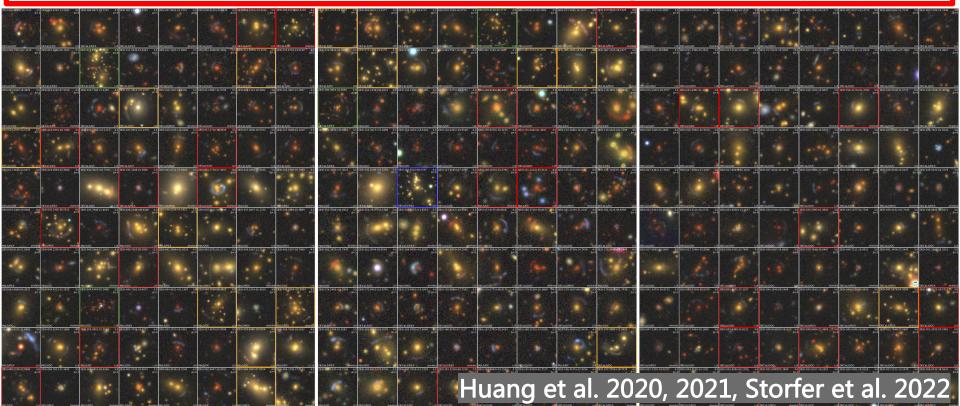
Identifying Strong Lenses with Deep Learning



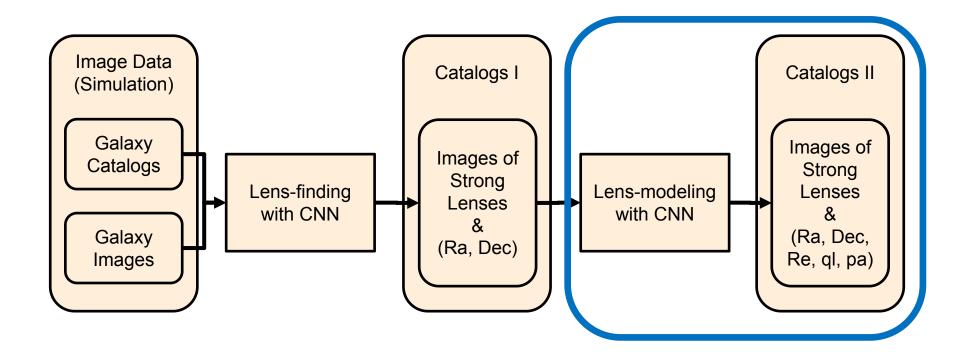
Sorted by area under the ROC curve

##	(•		TPRO	TPR10	description_short	author.1
## 1	4	CMUDee	nl ens (98%	3e-02	0.4534297041	CNN	Francois Lanusse
## 1	LC	CITODEC			0e-02	0.1027314963	CNN	Quanbin Ma
## 2	20	LASIRU EPFL (111)	Ground-Based	0.9/49255	7.493794e-02	0.1131977256	CNN	Mario Geiger
## 3	3	cas_convnet_mean	Ground-Based	0.9634215	2.022629e-02	0.0761790327	CNN	Colin Jacobs
## 2	22	Ground	Ground-Based	0.9557059	0.00000e+00	0.0071018193	CNN	Emmanuel Bertin
## 2	23	Ground	Ground-Based	0.9557059	0.000000e+00	0.0071018193	CNN	Emmanuel Bertin
## 2	24	Ground_fixed	Ground-Based	0.9557059	0.000000e+00	0.0071018193	CNN	Emmanuel Bertin
## 2	25	Ground_fixed	Ground-Based	0.9557059	0.000000e+00	0.0071018193	CNN	Emmanuel Bertin
## 9	9	Philippa Hartley2	Ground-Based	0.9310191	2.237273e-01	0.3453159911	SVM / Gabor	Philippa Hartley
## 7	7	Philippa Hartley	Ground-Based	0.9293543	2.123763e-01	0.3316908714	SVM / Gabor	Philippa Hartley
## 2	27	Manchester-NA2	Ground-Based	0.8913778	2.803645e-04	0.0075297887		
## 2	28	Manchester-NA2	Ground-Based	0.8913778	2.803645e-04	0.0075297887	Luman Incha	ction 80%
## 2	29	Manchester-NA2-Submission2	Ground-Based	0.8913778	2.803645e-04	0.0075297887	Human Inspe	
## 3	30	Manchester-NA2-Submission2	Ground-Based	0.8913778				
## 4	ŧ 🚺				5e-03	0.0186123524	edges/gradiants and Logistic Reg.	Camille Avestruz
	13	Traditional I	Method	ds 83	5e-05	0.0003810517	CNN / SVM	Clecio Roque De Bom
100000	31				2e-04	0.0021145867		Alessandro Sonnenfeld
## 1		LASIRU EPFL (13D)			4.113026e-03		CNN	Mario Geiger
## 8	3	resnet_5d0aad0	Space-Based	0.9225303	2.206807e-01	0.2904204271	CNN	Francois Lanusse
## 1	15	GAMOCLASS	Space-Based	0.9210117	7.416406e-02	0.3570444584	DL / CNN	Marc Huertas-Company
## (CMU-DeepLens-Resnet-Voting	Space-Based	0.9145407	0.00000e+00	0.0082046692	CNN	Quanbin Ma
## 1		space	Space-Based	0.9143197	6.755404e-04	0.0127852282	CNN	Emmanuel Bertin
## 1	9	res_bottleneck_87b7e8a	Space-Based	0.9068996	7.506005e-05	0.0038030424	CNN	Eric Ma
## 3	32	CNN_kapteyn	Space-Based	0.8179482	1.000625e-04	0.0002001251	CNN	Enrico Petrillo
## 2	21	CAST-SB	Space-Based	0.8128851	6.909326e-02	0.1186942145	CNN	Clecio Roque De Bom
## 5		Manchester1			7.354597e-03		Human Inspection	Neal Jackson
## 1		Philippa Hartley2	Space-Based	0.8092423	2.859788e-02	0.0812650120	SVM / Gabor	Philippa Hartley
## 1	17	Philippa Hartley	Space-Based	0.8012731	2.934848e-02	0.0717323859	SVM / Gabor	Philippa Hartley
## 1	2	Attempt2			0.00000e+00		CNN / wavelets	Andrew Davies
## 1		YattaLensLite			0.00000e+00			Alessandro Sonnenfeld
## 2	26	All-now	Space-Based	0.7346352	4.900040e-02	0.0659031545	edges/gradiants and Logistic Reg.	Camille Avestruz
## 2	2	GAHEC IRAP 1	Space-Based	0.6580909	1.127113e-03	0.0090920476	arcMet	calf et al. 2019

CMUDeepLens is used to search strong Lenses in DESI Legacy Imaging Surveys, found > 3000 high-quality candidates, ~ 10 X Current Strong Lens Sample

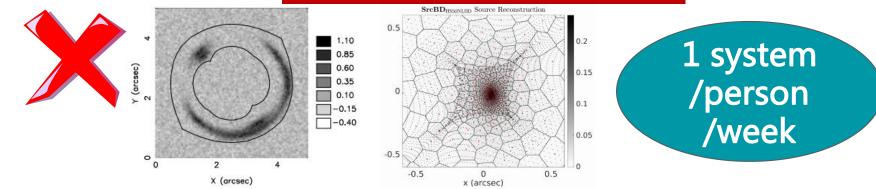


How to identify and model tens of thousands of strong lenses from tens of billions of astronomical objects in the big data era ???

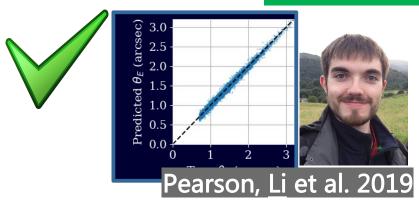


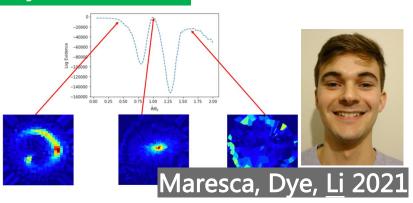
Modeling Strong Lenses with CNN

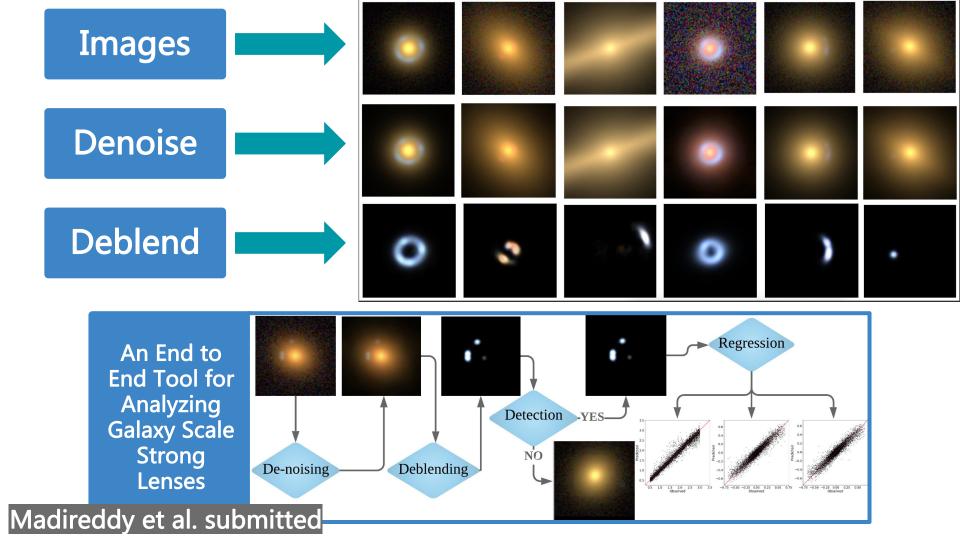
Traditional MCMC : Slow, L

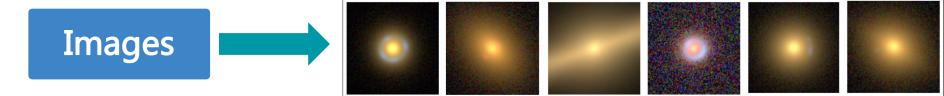


CNN-based Method : 10^6 Faster, Fully Automatic

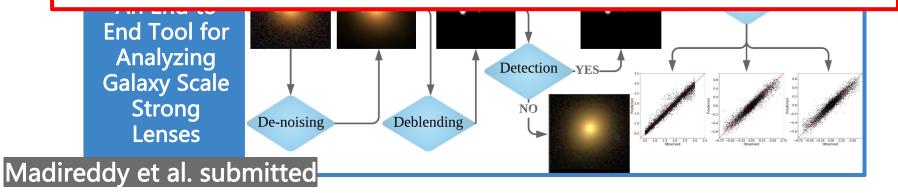








The CSST-SLWG is intensely forging this pipeline for CSST at the Moment. Welcome to join us!



1.Gravitational lensing is useful, but lens-finding and modeling is challenging in the Big Data Era.

2.Deep learning works better than traditional methods and human-inspection in the detection of SGLs.

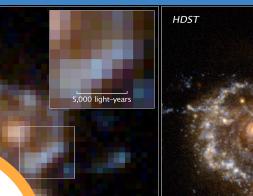
3.Deep learning also can implement strong-lens-modeling efficiently and automatically.

4.An End2End Strong lensing Pipeline for LSST is ready. The CSST-SLWG is intensely forging it for CSST.

Detecting

Predicting

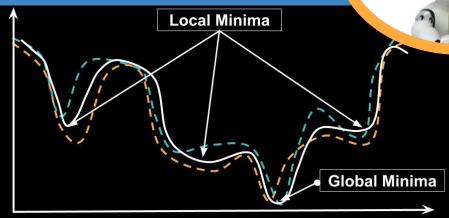
5,000 light-years



HST

0

Fitting



Modeling

Backup Slides

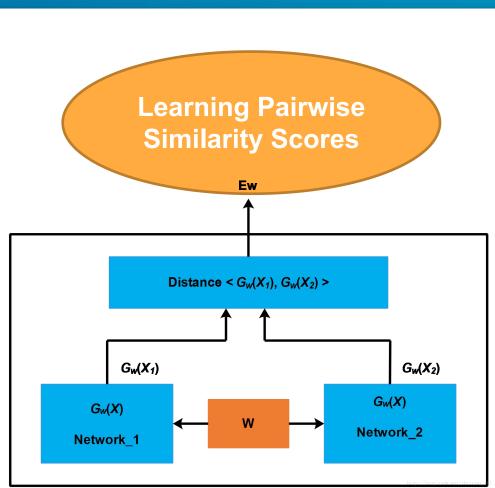
Few-shots Learning and Siamese Network

Basic Idea of Few-Shot Learning

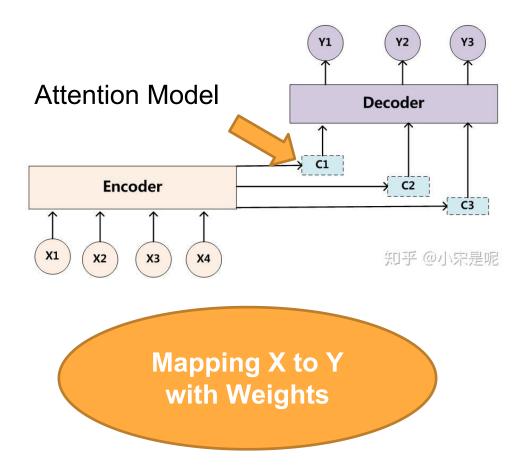
- Train a Siamese network on large-scale training set.
- Given a support set of k-way n-shot.
 - k-way means k classes.
 - n-shot means every class has n samples.
 - The training set does not contain the k classes.
- Given a query, predict its class.
 - Use the Siamese network to compute similarity or distance.

Positive Samples

Negative Samples



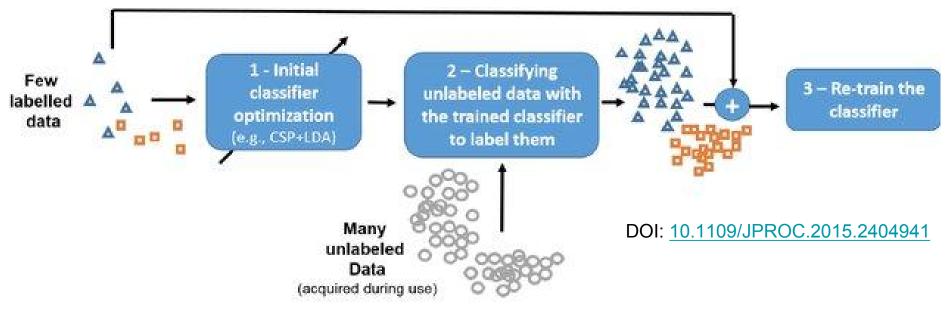
Encoder-Decoder and Attention Model



A woman is throwing a frisbee in a park.

A little girl sitting on a bed with a teddy bear.

Semi-supervised Learning



- A model is first trained on the few available labelled training data.
- The model is then used to classify and label the many unlabeled data available.
- The newly labelled data are combined with the originally available labelled ones to retrain the model with many more data, and thus hopefully to obtain a better model.

Unsupervised Deep Contrastive Learning

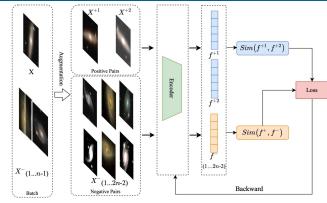
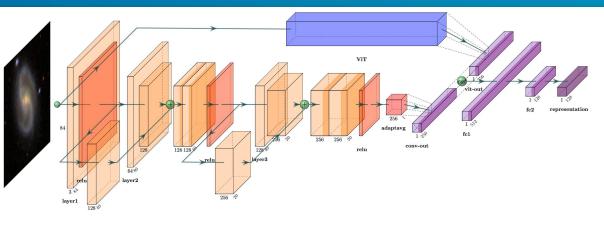


Figure 3. The overall architecture of the proposed network, which learns representation with multi-hierarchy features by Encoder and backward the loss calculated from the similarities between the positive pair and negative pairs.



g with ViT to learn

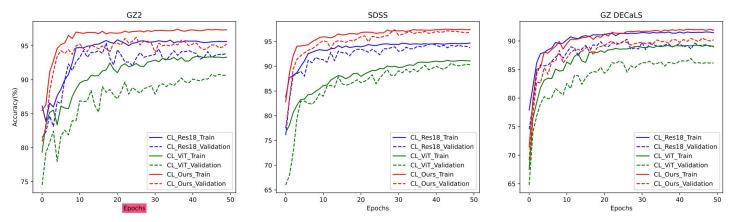


Figure 6. Performance comparison of the accuracy of training and validation along with the epochs. CL_Res18, CL_ViT and CL_Ours represents the CL methods using ResNet-18, ViT and our proposed model as encoder.